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Biological genes are argued to have an infinite range of interaction, in 
agreement with the original Kauffman model and in disagreement with recent 
modifications which put them on a lattice with nearest neighbor interaction. 
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Recent simulations (1) have investigated a special kind of Kauffman random 
Boolean network model for genetics, where each gene is either on or off, 
depending in a fixed way on whether k neighbor genes are on or off. These 
genes are assigned to the sites of a lattice and one asks, for example, if 
subsets of them are percolating, i.e., form one connected network of 
neighboring sites. 

The dynamical properties of this class of cellular automata have been 
the theme of many papers referring to problems gathered from theoretical 
physics in the recent years. In particular, Stauffer ~1~ refers to biological 
problems, (2-6) where Kauffman automata were formulated for the first time, 
i.e., problems of genetic regulation. (7'8) 

To check the biological applicability of these modified models, it is 
advantageous to separate the properties of the model structure, i.e., implicit 
assumptions about the structure of the phenomenon, from its results and to 
investigate both of them separately. 

The causal texture of the genome, i.e., the regulative interaction of the 
genes, is projected onto a lattice, each site representing a formal gene. The 
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neighborhood of a gene is defined, for example, to be the four orthogonal 
neighbors on the square lattice, i.e., the von Neumann neighborhood of 
cellular automata. This projection implies two structural characteristics we 
want to investigate in detail below: 

1. Such a lattice gene directly interacts only with its spatially nearest 
neighbors. This implies that only a strictly limited spatial neighborhood of 
the gene is taken into consideration. But gene of higher organisms 
(eukaryotes) are arranged on several linear DNA molecules, the 
chromosomes. (5) Within the nucleus characteristic for the eukaryotes, they 
permanently change their relative position, thus changing the distance 
between them. To guarantee a limited spatial neighborhood one either has 
to choose the range of interaction of a gene very small, only covering its 
direct neighbors on the same chromosome, or assume a mechanism that 
fixes the chromosomes, thus avoiding a change in their distances. 

Both assumptions contradict biological findings. Interactions between 
genes on different chromosomes are well known (9) and the temporal 
variability of the spatial distances of the genes is commonly accepted. 

Furthermore, there is a second reason to call the idea of a spatially 
limited interaction critical: Genetic regulation is based iJpon interaction of 
a gene with a regulatory macromolecule. Most commonly the macro- 
molecule is a protein. (5) But proteins are assembled only outside the 
nucleus, far away from the genes, in distances often exceeding the size of 
the nucleus. (6) It moves throughout the cell until it influences suitable genes 
in the nucleus. Biological findings (1~ indicate a homogeneous density of 
such proteins throughout the cell. Therefore the typical distance the infor- 
mation of a gene has to cover before it can become regulatory effective is 
much larger than the distances between the genes inside the nucleus. 
Spatial distances between the genes of a cell seem to be irrelevant for 
regulation. 

Therefore we assume that the regulatory interaction of the genes is 
essentially independent of their spatial distance. 

2. The activity of a square-lattice gene is determined only by its 
neighbors. 

The assumption that the activity of a gene depends only on its 
position stands in gross contradiction to biological results, which show that 
the ordered and coordinated regulation of a gene is independent of its 
position within the genome. (2~) For example, one can inject in early 
embryonal cells of the fruit fly Drosophila carrying a well-known genetic 
defect an intact version of the faulty gene. So-called P-vectors insert this 
gene at a randomly chosen position between other genes. (2) It is found that 
the regulation due to the inserted gene and its expression are totally 
normal, i.e., well-ordered and coordinated with the other genes. 
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Therefore we have to assume that the pattern of activity of a gene is 
mostly independent from its position. 

Based upon these structural considerations, not only square-lattice 
models, but all geometrically structured models with elements having fixed 
spatial relations seem unsuitable to describe the causal texture of the 
genome, at least if they contain a fixed spatial projection between genes 
and sites. Not geometrical structures, but more general topological struc- 
tures with an infinite range of interaction are necessary to describe the 
biological phenomenon, as Kauffman originally proposedJ 7'8). 

However, to be a useful tool for understanding a given problem, a 
theoretical model does not necessarily have to provide a structural 
equivalence in all aspects. One often finds it sufficient that it shows a com- 
parable and eventually an interpretable behavior: What questions were 
raised in refs. 1 ? 

Of the behavior found for lattice models, (1) the geometrical inter- 
pretation via percolation concepts has not been claimed to have biologial 
significance. Periods and limit cycles seem to us biologically significant if 
one follows Kauffman ~7'8~ and identifies biological cell types with 
mathematical limit cycles. Most relevant for biological applications seem to 
us the investigations of stability against minor changes (mutations, damage 
spreading). (1,7,s) 

Since their introduction, (7'8) Kauffman's random Boolean networks 
have found great acceptance, above all in theoretical physics. Its originally 
general and topological structure was replaced by a geometrical one, 
making possible many physical interpretations. The original infinite-range 
Kauffman model seems to us much more applicable than recent lattice 
versions. One could modify their structure again or investigate possible 
modifications in the interpretation of sites and neighbors on the lattice, 
thus replacing spatial ideas by functional ones. Both suggestions will be 
presented in a subsequent paper. 
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